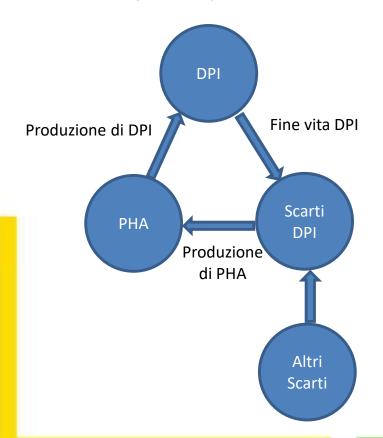


ECOdesign e riciclo di DPI in una filiera industriale circolare EcoDPI

Presentazioni Risultati Conclusivi WP-RI-2


Biopolimeri per materiali riciclabili

A cura di: Francesco Fianelli (Innoven)

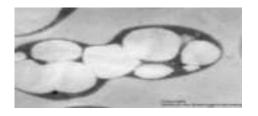
Obiettivi di WP-RI-2: Biopolimeri per materiali riciclabili

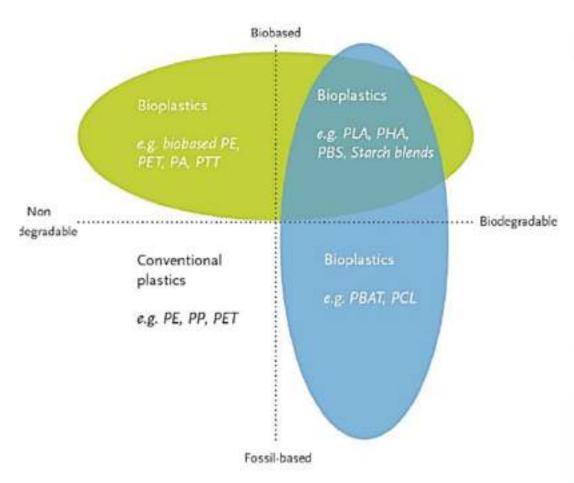
La produzione di poli-idrossi-alcanoati (PHA) da sostanze di scarto e rifiuti organici in scala di laboratorio e pilota per la produzione, con tecniche additive, di DPI in materiale bio-degradabile. L'obiettivo viene perseguito studiando le **fasi chiave di una potenziale filiera circolare per la produzione di tali dispositivi,** focalizzando l'attenzione sui seguenti obiettivi specifici:

- Task 4: Stato dell'arte conoscenze e tecnologie disponibili studio preliminare della letteratura e della raccolta brevettuale inerenti la produzione e applicazione di PHA, in particolare da colture aerobiche miste non sterili. Ottimizzazione delle tecnologie disponibili presso i partner ai fini progettuali.
- Task 5): Produzione a scala laboratorio e pilota di PHA
 Produzione di PHA in scala pilota da: (i da biomasse agricole a scala pilota (circa 10-15kg di biopolimero nelle forme -idrossi butirrato, -idrossi valerato e -idrossi esanoato); (ii) fanghi di depurazione; (iii) idrolizzati proteici, ottimizzazione dei relativi processi.
- Task 6: Caratterizzazione dei PHA prodotti
 Caratterizzazione dei PHA prodotti (termomeccaniche), comparazione con PHA
 commercialmente rinvenibili (prodotti in colture pure), conduzione di test di
 biodegradabilità anaerobica sui prodotti.
- Task 7: Bio-materiali per le conformazioni di filamenti, bio-film o polveri per la stampa 3D A partire dal PHA prodotto, produzione di filamenti per la successiva stampa 3D, polveri e/o bio-film. Analisi performance dei materiali nella stampa 3D.

Obiettivi di WP-RI-2: Biopolimeri per materiali riciclabili

Degradazione di plastiche e formazione di Micro Plastiche


Nella Direttiva Europea 2020/2184 sulle acque potabili e le Micro Plastiche sono attenzionate come agenti potenzialmente pericolosi data la loro capacità veicolare composti nocivi all'interno di animali e persone.



Stato dell'arte, conoscenze e tecnologie disponibili

(PHA)

- Materiale intracellulare
- ➤ 100% origine biologico
- ➤ Biodegradabile e compostabile
- Bio-compatibile
- > Termo-resistente
- > Flessibile
- Proprietà fisico-chimica simile alle plastiche sintetiche
- ➢ Piu di 150 monomeri di PHA, i più importanti sono PHB e PHV.

European bioplastics association, 2008

Biodegradabilità del PHA, PLA

La produzione di biometano è stata valutata attraverso la conduzione di prove di «BioMethane Potential» (BMP) su particelle pure di:

- 1) PHB,
- 2) PLA

e miscele di PHB e PLA in due diversi rapporti

- *3) PHB: PLA = 75:25*
- 4) PHB:PLA = 50:50

La presenza dei microorganismi è stata assicurata dall'utilizzo di digestato agricolo come inoculo.

---- PLA 100 (%)

PHB 100 (%)

PHB:PLA 50:50 (%) - PHB:PLA 75: 25 (%)

250

200

150

100

50

50

100

Biodegradabilità del PHA e PLA

BMP di diverse miscele di PHB e PLA

450 400 350 Metano (L/kgSV) 300

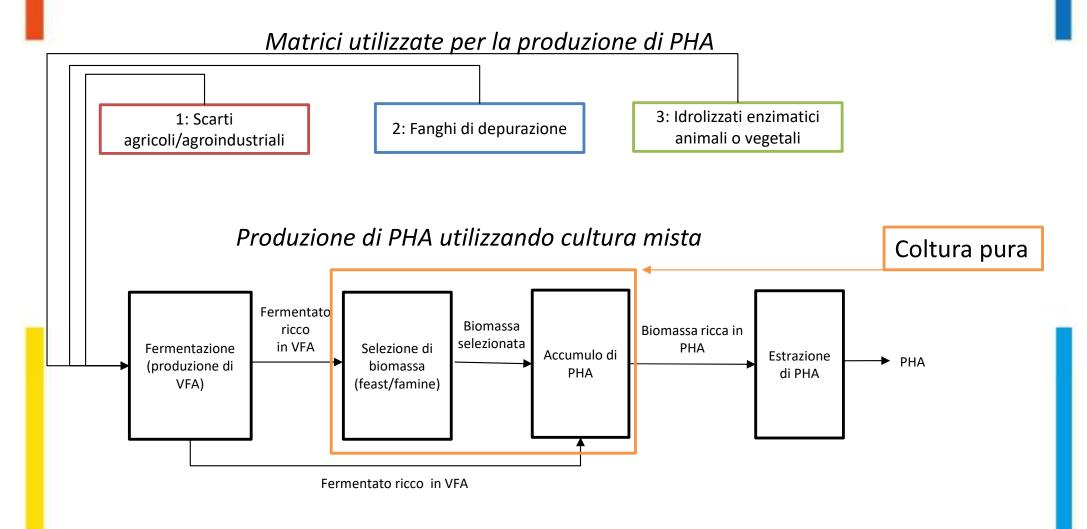
La composizione chimica delle bioplastiche influenza la performance di produzione di metano. In particolare:

200

250

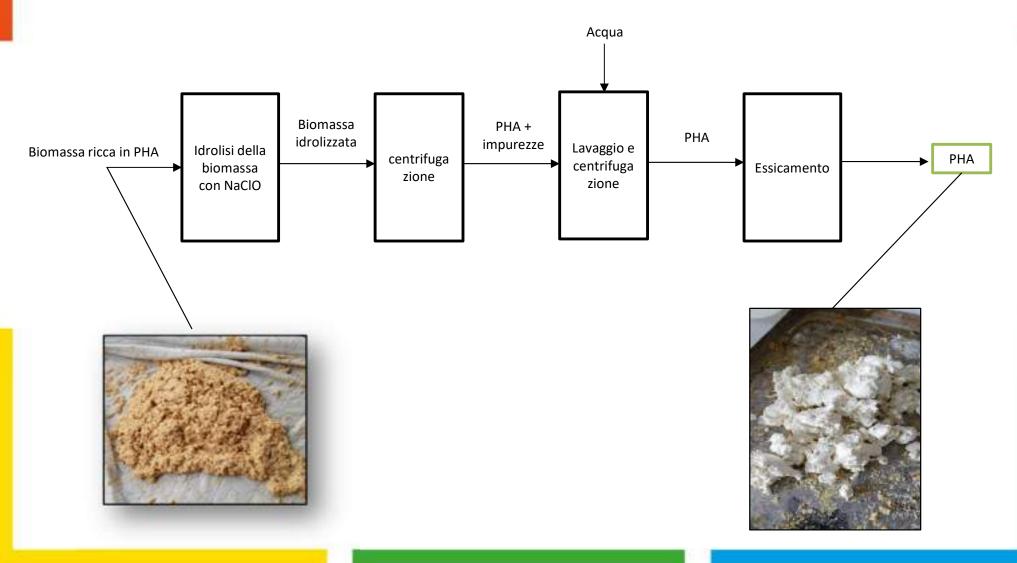
300

- > Solo le polveri di PHB dimostrano rese e tempistiche compatibili con quelle della digestione anaerobica della FORSU
- > La presenza di PLA inibisce la produzione di biogas e allunga i tempi i tempi di biodegradazione delle bioplastiche


150

Tempo (giorni)

> Le polveri di PLA pure sono difficilmente biodegradabili in condizioni anaerobiche. Consequentemente la produzione di metano è stata molto bassa

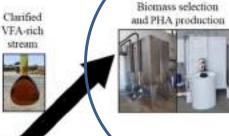


Produzione di PHA da matrici organiche

• Estrazione e purificazione

GREEN CLUSTER

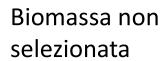
Barilla's byproduct



or anaerobic sludge

Biogas production

Fermentazione


VFA	48 [gCOD/L]	
Soluble COD	97 [gCOD/L]	

PHA

%PHA (w/w)	41,99	
% HV (w/w)	9,3	
% HB (w/w)	90,7	

Resa

0,5 дрна/дуга	100 g _{PHA} /kg _{flour}
---------------	---

Solid fraction

Biomassa Selezionata

• Produzione di PHA da scarti agricoli/agroindustriali

Produzione di PHA da fanghi di depurazione

		AND THE RESERVE OF THE PARTY OF	
Parameter	Unit	Average value	
TS	g/kg	36 ± 1	
VS	g/kg	27.0 ± 0.4	
COD	g/kgTS	789 ± 66	
COD _{SOL}	mg/L	1312 ± 146	
N-NH ₄ +	mg/L	163 ± 22	
P-PO ₄ 3-	mg/L 65 ± 9		

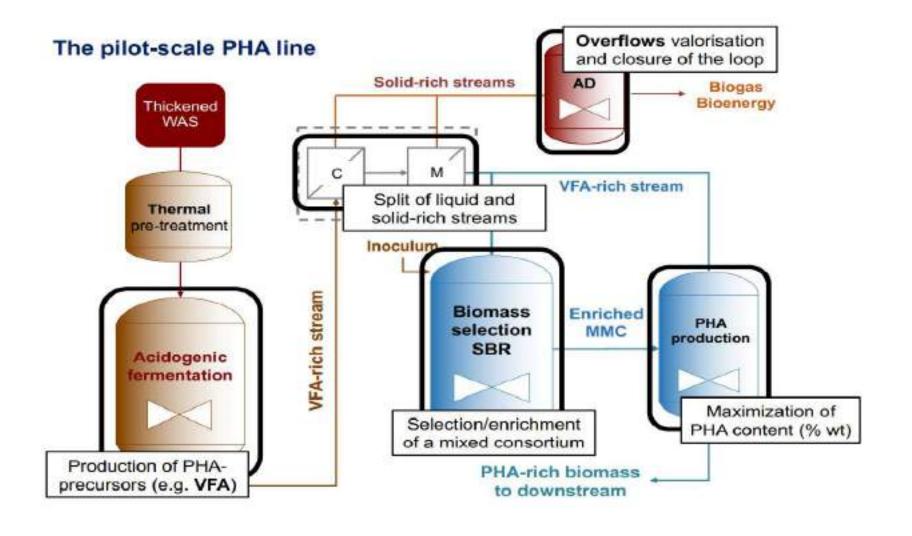
Impianto integrato trattamento acque di Treviso (ATS SrI)

Fanghi di depurazione

OUTLINE

- Pretrattamento fanghi di depurazione per l'incremento della solubilizzazione della matrice organica e del COD solubile (thermalalkaline hydrolysis.
- Fermentazione acidogenica dei fanghi pretrattati per la produzione di VFA, precursori per la sintesi microbica dei PHA.
- Produzione aerobica di PHA tramite MMC e successiva estrazione/purificazio ne del PHA.

Parametro	Unità	Valore
Temperatura di degradazione (T _d)	°C	266 - 280
Temperatura di fusione (T _m)	°C	156 - 161
Temperatura di transizione vetrosa (T _g)	°C	-6
Cristallinità (X_c)	%	44 - 46
Peso Molecolare (M _W)	KDa	370 - 405

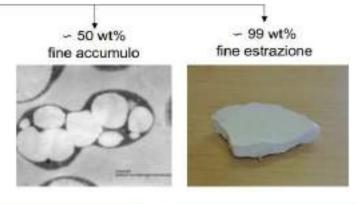

Thickened WAS (thermally pre-treated) 0.70 m³ - 17.9 kg VS Dark fermentation 6.80 kg COD_{VFA} 1.36 kg COD_{VFA} C-UF (to Anaerobic Digestion/Co-digestion) 5.44 kg COD_{VFA} PHA aerobic line (SBR + accumulation) 1.0 kg PHA

PHA yield 56 g PHA/Kg VS

• Produzione di PHA da fanghi di depurazione

Produzione di PHA da fanghi di depurazione

The pilot-scale PHA line - Selezione della Biomassa e Accumulo PHA



Sequencing Batch Reactor (SBR)

- a) Fully aerobic feast-famine
- b) Uncontrolled pH (~ 9.0)
- d) Temperature: 22 25°C
- d) HRT: 2 days

Fed-batch accumulation

- a) Fully aerobic feast
- b) Uncontrolled pH (~ 9.0)
- e) multi-spike based on oxygen control

ILSA S.p.A. IDROLIZZATI PROTEICI

substrati per la produzione di PHA

1

2

3

4

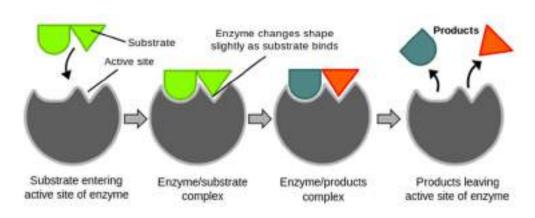
Fasi del progetto

Studio letteratura Scelta sottoprodotti agroindustriali Produzione idrolizzati scala pilota Produzione idrolizzati scala industriale

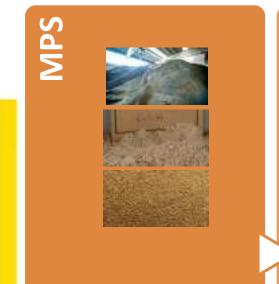
PHA

Risultati

Ottimizzazione processo di biocatalisi

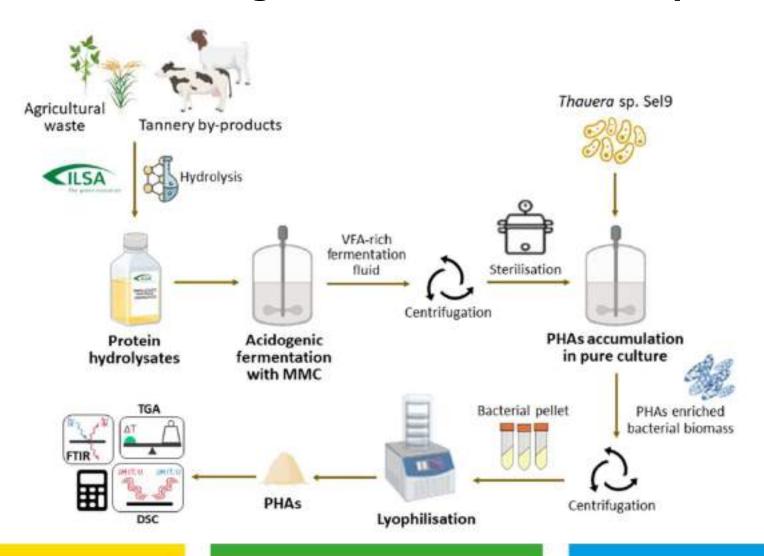

Produzione standardizzata e riproducibile di idrolizzati (e quindi PHA)

Identificazione dell'idrolizzato/i migliori per rese e caratteristiche del PHA



Produzione di PHA da Idrolizzati enzimatici animali o vegetali

Idrolisi Enzimatica: è un processo di idrolisi della proteina (di origine animale oppure vegetale) che avviene ad opera di enzimi specifici e selettivi in grado di scindere la catena di amminoacidi in punti specifici. Tale processo è denominato "Gentil process", in quanto avviene all'interno bioreattori di controllati con bassa temperatura (40-50 °C) e pH vicino alla neutralità, condizioni ottimali che consentono agli enzimi di idrolizzare il substrato proteico e di conservare gli amminoacidi nella loro forma naturale (levogira).



Biopolimeri

PHA

Produzione di PHA da Idrolizzati enzimatici animali o vegetali utilizzando coltura pura

Analisi dei campioni di PHA

CAMPIONI ANALIZZATI

Innoven

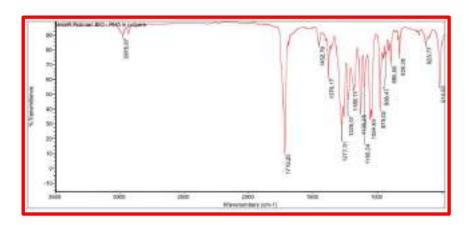
1. 2 diversi campioni di PHA estratto (HB-co-HV), in scaglie

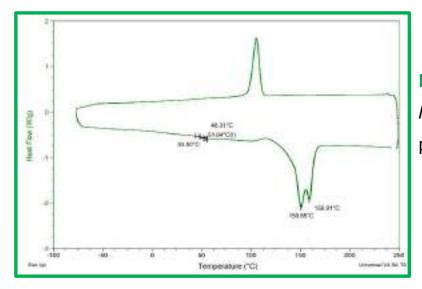
UniVR

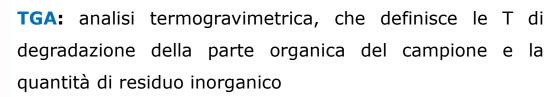
- 3. **PHA** commerciale, in polvere
- 4. **PLA/PHBV 50/50**, filamento da stampa 3D
- 5. **PLA/PHBV 25/75**, filamento da stampa 3D

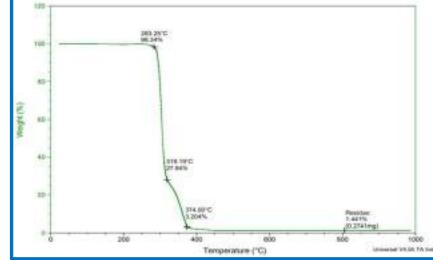
UniVE

- 6. **PHA** estratto, in polvere
- 7. **PHA** non estratto, in scaglie






Analisi dei campioni di PHA


FT-IR: spettroscopia ad infrarossi in trasformata di Fourier. I risultati sono riportati in Trasmittanza (%); permette di individuare i legami costituenti il polimero, a seconda del posizionamento dei picchi nello spettro.

DSC: calorimetria differenziale a scansione, con metodo *Heat-Cool-Heat*; individua le transizioni termiche del polimero (Tg, Tm).

WP-RI-2

Analisi dei campioni di PHA

- ▶ FT-IR: il posizionamento dei picchi negli spettri dei diversi campioni è equivalente (stessi legami
 → stesso polimero); il campione commerciale ed il PHA di UniVE hanno spettri più puliti e privi di umidità.
- DSC: il PHA commerciale ha un picco di fusione ben definito e più profondo rispetto ai PHA da estrazione (indice di maggiore cristallinità) e al raffreddamento cristallizza più velocemente dei PHA estratti.
- FGA: il PHA commerciale ed il PHA estratto di UniVE degradano a partire da elevate T (250°C 280°C), molto velocemente (in un ΔT di circa 20°C) ed in maniera completa (senza residuo inorganico); i PHA estratti da Innoven ed il PHA non estratto (UniVE), invece, iniziano a degradare poco al di sopra della T_{amb} e la degradazione si articola in molteplici step (indice di un campione non omogeneo).

> RISULTATI SU PLA/PHBV

- FT-IR: il posizionamento dei picchi negli spettri dei 2 campioni è equivalente (stessi legami → stesso polimero), varia invece l'intensità di alcuni picchi.
- ➤ **DSC**: il campione PLA/PHBV 50/50 presenta un unico picco di fusione (miglior compatibilità dei 2 componenti del *blend*), mentre il 25/75 due picchi distinti ma nello stesso intervallo di T.
- > **TGA:** in entrambi i campioni la degradazione avviene in 2 step, in primis degrada il PHA (PHBV) tra 280-320 °C e successivamente il PLA nell'intervallo 320-370 °C.

Estrusione e stampa con PHA

Estrusione e stampa con PHA

PLA/PHBV

Conclusioni

- Validazione della possibilità di produrre DPI biobased e biodegradabili a partire da scarti agro-industriali.
- > Potenzialità di creare valore aggiunto a partire da scarti di processo
- Rese che oscillano tra il 5 e il 30%
- Criticità in fase di estrazione del polimero per garantire un elevato grado di purezza necessario per la lavorazione successiva

Per informazioni

Francesco Fianelli *francesco.fianelli@innoven.it*

oppure

Vadim Scerbacov vadim.scerbacov@innoven.it

Coordinamento e project management dott. Enrico Cancino email: enrico.cancino@greentechitaly.com