Maschere e respiratori sono probabilmente tra i DPI più importanti. Sono una barriera fisica alle vie respiratorie verso le goccioline che possono entrare attraverso il naso e la bocca ed all'espulsione delle goccioline muco-salivarie dai soggetti infetti (Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives", Research, vol. 2020, Article ID 7286735, 40 pages, 2020). Il loro ruolo è particolarmente importante nel contesto della pandemia COVID-19. La capacità di filtraggio, e quindi il livello di protezione contro inquinanti ed agenti patogeni, dipende dai materiali utilizzati e dal design. La dimensioni dei contaminanti presenti nell'aria differiscono molto. Il virus SARS-CoV-2 ha una dimensione che va da 60 a 140 nm, più piccolo di batteri, polvere e polline. Pertanto, maschere e respiratori realizzati con materiali con dimensioni dei pori più grandi, come cotone e tessuto sintetico, non sono in grado di filtrare efficacemente, rispetto ai dispositivi realizzati con materiali con dimensioni dei pori più piccole. Oltre alla capacità di filtraggio, fattori come il comfort dell'utente nell’indossare il DPI e la traspirabilità variano anche tra i diversi modelli.

Perché un metodo di decontaminazione per mascherine possa essere considerato efficace deve soddisfare diversi requisiti: gli agenti patogeni devono essere uccisi ed inattivati; non deve insorgere riduzione nella capacità di filtrazione verso patogeni e particolato; tutti i componenti della mascherina, quali gli elastici ed il nasello, devono rimanere integri; la vestibilità del dispositivo deve rimanere inalterata; il trattamento di decontaminazione non deve lasciare sostanze chimiche o sottoprodotti che potrebbero pregiudicare la salute e il benessere degli utenti. Molteplici articoli e siti web riportano scoperte e risultati delle diverse attività di ricerca in quest’area. Ad esempio, il sito web N96DECON (https://www.n95decon.org/) fornisce fonti accessibili on-line sui metodi di decontaminazione di mascherine N95. In generale, esistono molti modi e molti agenti chimici che possono essere utilizzati per disinfettare dagli agenti patogeni le nostre mani, piccoli oggetti e superfici comuni con elevata frequenza di contatto, ma non tutti questi possono essere pratici per la decontaminazione di mascherine.

Comune è la generazione di vapori di perossido di idrogeno per la disinfezione di spazi chiusi, come uffici, postazioni di lavoro, reparti ospedalieri e interni di autobus, treni e aeromobili, nonché per sterilizzare apparecchiature mediche e di laboratorio e strumenti in camere chiuse appositamente progettate. I vapori di perossido di idrogeno sono considerati una valida tecnologia per la decontaminazione di mascherine e di DPI in generale. L’inattivazione dei micro-organismi e dei virus attraverso l’uso del perossido di idrogeno si ottiene principalmente attraverso la reazione di ossidazione del perossido di idrogeno con le proteine in essi contenuti ed attraverso la rottura degli acidi nucleici causata dai radicali liberi idrossilici ed idroperossidici che vengono prodotti dalla reazione inziale del perossido di idrogeno con le proteine (Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. J Antimicrobial Chemotherapy. 2010;65(10):2108–2115)

Durante il trattamento, i vapori di perossido riescono a raggiungere tutte le aree in ombra e le fessure presenti nella mascherina, garantendo così un’azione di decontaminazione in profondità. L’efficacia dell’azione di decontaminazione del trattamento con vapori di perossido di idrogeno ed il suo effetto sulla prestazione della mascherina e sulla sua integrità strutturale dipende dal tempo di esposizione, dalla concentrazione dei vapori di perossido, dalla modalità di esecuzione del trattamento che spesso è costituito dalle fasi di deumidificazione, di conditioning, di stasi, di gassing e di aereazione. Inoltre, poiché il perossido di idrogeno decompone rapidamente in ossigeno ed acqua, la presenza di residui non costituisce un serio problema.

La tecnologia con vapori di perossido di idrogeno è considerata in generale un metodo efficace per la decontaminazione delle mascherine da batteri e da virus, senza comprometterne le prestazioni. Ad esempio, a seguito di trattamenti con vapori di perossido fino a 55 minuti e a temperatura fino a 80°C nelle mascherine N95 è stato possibile riscontrare solo una lieve opacizzazione del nasello metallico, ma nessuna significativa alterazione della capacità di filtrazione (Effect of decontamination on the filtration efficiency of two filtering facepiece respirator models,” Journal of the International Society for Respiratory Protection, vol. 24, pp. 93–107, 2007); l’assenza di danneggiamento nei trattamenti di decontaminazione con vapori di perossido di idrogeno è stata validata da una campagna di test condotta da Battelle, nella quale per le mascherine N95 è stata verificata la capacità di soddisfare i requisiti in termini di capacità di filtrazione e di vestibilità anche dopo 50 cicli di trattamento eseguiti con il generatore di vapori di perossido di idrogeno Bioquell Clarus C, sebbene gli elastici cominciassero a deteriorarsi (Final Report for the Bioquell Hydrogen Peroxide Vapor (HPV) Decontamination for Reuse of N95 Respirators, Battelle Columbus, OH, USA, 2016).

Nel contesto della pandemia COVID19, ampio studio è stato dedicato alla valutazione dell'idoneità della tecnologia con vapori di perossido di idrogeno per il trattamento delle mascherine contaminate da SARS-CoV-2. Ad esempio, è stata dimostrata (Hydrogen peroxide vapor sterilization of N95 respirators for reuse, medRxiv, 2020) nel caso di mascherine N95 la completa eradicazione dei tre fagi T1, T7 e Pseudomonas Phi6, che mimano il virus SARS-COV-2, grazie al a trattamento con vapori di perossido di idrogeno, in un ciclo costituito da una fase di 10 minuti di conditioning, una fase di 30-40 minuti di gassing con vapori di perossido di idrogeno con concentrazione di 16 g/m3, una fase di dwell di 25 minuti ed una fase finale di aerazione di 150 minuti, senza riscontrare alcuna deformazione del dispositivo dopo 5 cicli di trattamento. Analogamente, è stato possibile verificare (N95 mask decontamination using standard hospital sterilization technologies, medRxiv, 2020) la scomparsa del virus SARS-COV-2 su mascherine N95 a seguito di un trattamento di un’ora con fase di deumidificazione di 10 minuti, fase di conditioning di 3 minuti, fase di decontaminazione di 30 minuti e fase di areazione di 20 minuti, con un picco della concentrazione dei vapori di perossido di idrogeno pari a 750 ppm; le mascherine hanno potuto subire 10 cicli di trattamento senza alcuna alterazione delle loro prestazioni. Nessuna perdita di funzionalità, sia in termini di capacità di filtrazione che di vestibilità, è stata riscontrata (Effect of various decontamination procedures on disposable N95 mask integrity and SARS-CoV-2 infectivity, medRxiv, 2020) in mascherine N95 dopo due cicli di trattamento con vapori di perossido di idrogeno, con una fase di gassing di 20 minuti ad una concentrazione di circa 500 ppm, una fase di dwelling di 60 minuti ad una concentrazione di circa 420 ppm ed una fase di areazione di 210 minuti a temperatura ambiente, verificando l’assenza di virus al termine di ciascun ciclo di trattamento. E’ invece nota l’incompatibilità del perossido di idrogeno con la cellulosa, che viene utilizzata in alcune tipologie di mascherine N95 fra i materiali costituenti (Hydrogen Peroxide Methods for Decontaminating N95 Filtering Facepiece Respirators Applied Biosafety Volume 00, Number 00, 2021)


ICE Toolkit

strumenti a supporto delle decisioni aziendali

per la circolarità


per la transizione ecologica


per LCA


Processi di Simulazione

Processi Certificati GTI

PROGETTI

Il progetto INERTEX – SISTEMI AVANZATI PER L’INERTIZZAZIONE DEI RIFIUTI è stato cofinanziato dalla Regione del Veneto. Piano Sviluppo e...

Il progetto EcoDPI, acronimo di ECOdesign e riciclo di DPI in una filiera industriale circolare, è il nuovo progetto che vede la collaborazione tra...